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Contributions of anharmonics to the nuclear relaxation
second hyperpolarizability of a push—pull polyene
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ABSTRACT: A theoretical study of the contributions of anharmonics to the nuclear relaxation second hyperpolariz-
ability of m-conjugated push—pull polyenes by using an analytical evaluation of electrical properties method and a
valence-bond—charge-transfer model was carried out. A relationship between nuclear relaxation and electronic
contributions to the second hyperpolarizability is derived. It was found that the anharmonicity is essential in a
numerical estimation of nuclear relaxation second hyperpolarizability. Copyright © 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

To study the effect of a uniform electric field on a
molecule, the molecular potential energy, U(q,¢), can
be expanded in a Taylor series as

U(q,&) = U(q,O) — ZH[E,‘ — (1/2') Z(Jé,‘j&,‘&‘j
— (1/3') Zﬂijkgigjgk — (1/4') Z'Yijk/giajgk‘gk — ... (1)

ik ikl

where U(g, 0) is the potential energy in the absence of the
field, €, p; is the ith Cartesian component of the dipole
moment, ¢; are the x, y and z components of the static
electric field and «;, Bijx, Vi are the first-, second- and
third-order polarizability tensor, respectively. In this ex-
pression, the potential energy U(g,¢) and the electrical
properties /i, cvj, Bij and ;. are calculated at the field-
free equilibrium geometry, g.q. However, under the
stimulus of a uniform electrostatic field, the equilibrium
geometry will relax to a new field-dependent equilibrium
position, geq(€), and the same field alters the potential
energy surface for nuclear motion about the new equili-
brium position. These induced shifts in geometry and
potential energy are recognized as nuclear relaxation (nr)
and vibrational contribution, respectively.'~

One important point to consider on the calculation of
the nuclear contributions (nuclear relaxation and vibra-
tional) to the hyperpolarizabilities is the effect of the
electrical and mechanical anharmonicities associated
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with the potential energy surface. When these anharmo-
nicities are ignored, i.e. the so-called double harmonic
approximation (DHA) hypothesis, the nuclear contribu-
tion is due entirely to the nuclear relaxation. In particular,
Zuliani ef al.® found experimentally an interesting simi-
larity in magnitude between the nuclear relaxation and
electronic contributions to the first, 3,.., and second, ...,
molecular hyperpolarizability. Castiglioni er al.* later
presented a theoretical explanation for the observed close
comparison between the first-order electronic hyperpo-
larizability, 7., and its nuclear relaxation contribution,
., along the 7-chain axis on a number of donor—
acceptor polyconjugated molecules. Considering only
the harmonic effects of the potential energy, Kim ez al.”
also applied the valence-bond—charge-transfer (VB-CT)
model for push—pull molecules to obtain an analytic
expression for G and 77, and confirmed that their
magnitudes are similar to 57 and 7, respectively. As a
result of the above studies, the vibrational spectra from
IR, Raman and hyper-Raman measurements can be
directly used to calculate B and . and also to
estimate the magnitudes of 3% and ~%,__. Bishop et al. 0
on the basis of the VB—CT model and DHA hypothesis,
found several parameter-independent relations between
nuclear relaxation and electronic hyperpolarizabilities.
Ab initio computational tests show that these relations are
not satisfied. As a byproduct result of the ab initio calcu-
lations, they found cases where (37 is larger than 3¢ .
Luis ef al.' applied an analytical method to evaluate
nuclear contributions to the electrical properties of polya-
tomic molecules, the so-called analytical evaluation of
electrical properties (AEEP) method. Expressions to
compute the nuclear contributions are derived from a
power series expansion of the energy potential. These
contributions to the electrical properties are given in
terms of the molecular energy derivatives with respect
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to normal coordinates, electric field intensity or both.
Only one calculation of such derivatives at g.q is required.
The energy expansion considers the mechanical and
electrical anharmonicities associated with the energy
potential. Therefore, the AEEP method allows us to
make calculations of the electrical properties clear of
the hypothesis of DHA.

We applied the AEEP method to push—pull polyenes in
order to study the nuclear relaxation contribution to the
first hyperpolarizability.” As a result, a formal relation-
ship between the nuclear relaxation and electronic con-
tributions to the first hyperpolarizability (3,,) was
derived, which incorporates the anharmonic terms related
to the ground-state potential energy. We found situations
where the anharmonic and harmonic contributions are of
the same order of magnitude. This result indicates that the
anharmonicity is vital in a numerical evaluation of the
nuclear relaxation contribution to 7.

In this paper, we make use of the AEEP method and
VB-CT model to establish the effects of the electrical and
mechanical anharmonicities on the nuclear relaxation
second hyperpolarizability, 7. The anharmonicity ef-
fect on the nuclear relaxation second hyperpolarizability
is theoretically studied by replacing the analytical ex-
pression for geq(€) in Eqn (1). The use of the AEEP
method and VB-CT model enabled us to express in a
clearer way a mathematical connection between the
nuclear relaxation and electronic contribution to the
second hyperpolarizability for push—pull polyenes with-
out using the DHA hypothesis.

The theoretical background for the VB—CT model is
summarized in the next section. The subsequent section
deals with the basic elements of the AEEP method as
applied to the VB-CT model, and we show how the
nuclear relaxation contribution to 7, is related to the

®
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Figure 1. Valence-bond (VB) and charge-transfer (CT)
structures of a push—pull molecule

Y = (1 =) Ppye + £ 20cr 2)

where the base function, yg, corresponds to a neutral
(VB) structure (no charge transfer from donor to accep-
tor) and 9cr to a charge-transfer (CT) structure. In the CT
structure, one electron is completely transferred from the
donor (D) to the acceptor (A) group, while readjusting the
other bonds (see Fig. 1). The fraction f of the CT
configuration in the ground state is determined by the
relative energy of 1)yg and cr on 1), the coupling
between them, the change in dipole moments and the
solvent polarity.

The Hamiltonian matrix describing a linear push—pull
molecule with a relevant vibrational mode ¢ is

Li(a — a°)? —t
H = 2 (q qVB) | o (3)
—1 Vo +3k(q — q¢r)

where ¢ represents the charge transfer integral (¢ is
positive), V corresponds to the electronic energy gap
between the CT and VB states evaluated at its corre-
sponding equilibrium positions g¢p and gy (with
qvg = —q¢r) and k represents the force constant appro-
priate for the polyene linkers.

From Eqns (2) and (3), the adiabatic potential energy
surface of the ground state for the zero field case, i.e.
e=0,1s

Vo + (k/2)[(q — dvs)* + (4 — gex)’] =/ (Vo + kéq)® + 412

Uu(q) =

electronic counterpart (;,..), when harmonic and anhar-
monic contributions associated with the potential energy
are taken into consideration. Conclusions and some
speculations about future work are presented in the last
section.

THE VB-CT MODEL FOR PUSH-PULL
MOLECULES

We start by considering the VB—CT model.>* In the VB—
CT model, the electronic ground-state wavefunction, 1),;,
of the push—pull polyene is described by using a linear
combination of two orthogonal wavefunctions represent-
ing two resonant structures:

Copyright © 2004 John Wiley & Sons, Ltd.

; )

where 6 = qyg — q¢r = —2g¢r. As assumed by Lu
et al.,’ the relevant vibrational coordinate ¢ is identical
with that of the bond length alternation (BLA) coordi-
nate,”**? which is located along the 7-chain axis. For the
donor—acceptor hexatrienes under consideration, the BLA
coordinate ¢ corresponds to (b+d)/2—(a+c+e)/3
(Ref. 10) (see Fig. 1). Since vy and ¥ct involve alternate
resonant descriptions of the intervening polyene unit, an
increase of f from 0 to 1 will shift each double bond (1.33
A) of the polyene to a single bond (1.45 A) and vice versa
(these distances are based on the experimental observa-
tions of the average bond lengths of trans-1,3,5,7-octate-
traene).® Consequently, the BLA coordinate changes
from gy = —0.12 A to gop = 0.12 A as the CT fraction
f goes from O to 1.
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Using the above expression for Ug(g), it is straightfor-
ward to verify that the equilibrium BLA coordinate g.q
[obtained by solving dUg(g)/dg =0 at geq] can be
written as follows:

Geq = qvp — &f (5)

with f as the square coefficient corresponding to the Ucr
function in the ground-state g~ Geg:

(V() + kéqeq)
v (Vo + kégeq) +422

(6)

1
= — 1—
f 2

Finally, the force constant (from d*Ug(g)/dg? = 0 at
qgeq) for the ground-state Uy at geq is

212k6?
K=k{1- — (7)

(Vo + ke + 422

As can be seen from Eqn (7), K differs from k£ when the
electronic structure does not correspond to either VB or
CT.

THE AEEP METHOD APPLIED TO
PUSH-PULL MOLECULES

The AEEP method' has been derived from a double
power series expansion on the potential energy of a given
chemical system with respect to normal coordinates, field
strength or both. Just a calculation of such derivatives at
the field-free equilibrium geometry, geq, is required. This
energy expansion also includes the mechanical anharmo-
nicity associated with the potential energy and electrical
anharmonicity for dipole moment, polarizability, first
hyperpolarizability, etc. The accuracy of the AEEP
method is only determined by the quality of the wave-
function used to describe the molecular system. With this
method it is simple to obtain equilibrium field-dependent
normal coordinates, geq(e), although some algebra is
required. In the AEEP method we need just a calculation
of the energy and its derivatives at g, followed by trivial
application of the related formulas. The method predicts
the order of the derivatives required for a complete
computation of a specific nuclear contribution (e.g. for
nuclear relaxation to the polarizability, c;, only second
derivatives are required). This interesting advantage is
exclusive to the AEEP method and allows important
savings in computational time.

For linear m-conjugated systems such as that in Fig. 1,
i.e. push—pull molecules, the hyperpolarizabilities are

Copyright © 2004 John Wiley & Sons, Ltd.

dominated by the z component along the m-chain axis,
so that all other components are ignored. Moreover,
assuming that the CT state has a large dipole moment,
uer, as compared with that found in the VB state, it is
safe to ignore the permanent dipole moment of the VB
state. As a result, in order to consider the response of a
conjugated donor—acceptor polyene in the presence of an
electric static field €, along the z direction, the energy Vy
in Eqn (4) can be substituted by Vy — MCTE.&Q

We now start to apply the AEEP method to the push—
pull molecules. Uy (q) in Eqn (4) is expanded as a double
power series in terms of € and BLA coordinate, ¢, along
the z direction:

where

©)

anm

o 1 |:a(n+m) Ugr(qv 5):|
qﬁ

T alm! nHeh
n!m! 0q"0e =0

is the coefficient of the power series expansion evaluated
in equilibrium geometry at zero field, geq.

In Eqn (8), the electronic contributions along the 7-
chain axis to the zero field case for dipole moment and
polarizabilities' are represented by the terms ps = —dot,
O‘Zz = —26102, ﬂgzz = —6a03, ’.Yzezzz = —246104, while me-
chanical terms of the potential energy such as force
constant, K, and first anharmonicity, f, are given by K =
2ax = [*Uy(q)/dq*]ge=0 [see Eqn (7)] and f =
6az) = [d*Ug (g, €)/dq’] geg.—0» Tespectively. Derivatives
for molecular properties can also be obtained from the
expansion coefficients, e.g. (Oui/0q) = —ay, (9ag/
9q) g =0 = —2a12, (0K /0e), .o =2an, (0%at./0q%)
Goq:e=0— —4ay;, (5f/8€)qeq.a:0 = 643, (35522/ 8‘])qeq75:o
= —6ay; and g = [P*Ux(q, 8)/8q4]qeq,E:0 = 24ay.

In order to take into account the nuclear relaxation
second hyperpolarizability, 727, terms up to n+m < 4
are considered in Eqn (8). In this case, 77, includes first-
and second-order mechanical anharmonicity (azg and ayq
terms), first- and second-order electrical anharmonicity
of the dipole moment (a,; and as; terms), first-order
electrical anharmonicity of polarizability (a,, term) and
the harmonicity approximation for the first hyperpolariz-
ability (a3 term).

The problem is then to determine the nuclear relaxation
contribution to the electrical properties arisen as conse-
quence of the changes in the equilibrium geometry
induced by the applied field. To do this, we begin
considering the stationary-point condition to Ug(g,¢)
[Eqn (4)]. This property allows us to write an iterative
solution to the related equilibrium field-dependent BLA
coordinate, geq(€), as'?
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axn an\’ 9azpar1  3az
2 et
ax  \ao 2a5,  2ax

a 3a
+ {ﬂ—ﬂql}qz—qg}eu... (10)
an(

where g = ai1/2ax, g2 = a12/2ax and g3 = a;3/2ax.

Substituting geq () into Eqn (8) (with n + m < 4) leads
to a field-dependent potential energy evaluated at the new
equilibrium coordinates:

ar
Ulgeq(€), €] = aco + anie + (aoz - L4)52

2
+ (a03 —dang + aZICI% - 613061?)53
apn 2
+ (aps — aizqi — Tfh + anq;

3 2 a%l‘]%
+ 2a219192 — az1q| — 3az0q792 — o
20

+ a4oq‘1‘ +

3axang; 9441\ 4
— et (11)
anx 4ay

Comparison between Eqns (1) and (11) and subtraction
of the purely electronic contribution to 7,
ey, = —24ay, leads to a general definition of the
nuclear relaxation second hyperpolarizability:

Vi = 24 <“13‘11 +a—52‘h —ang’ — 2a1q192 + az1q;

2

a 3azoas:
+ 3a30q19> + 2L q7 — asg| — q,
ano ano
9a3y 4
_|_ v 12
4612() @ ( )

. . . . . o
It is worth noting that in this expression 7. is a

function of the harmonic (a,o, a1, a;» and a;3) and
anharmonics (azg, dz1, a2, az; and ayg) coefficients.
Therefore, the first two terms in Eqn (12) represents the
harmonic contributions to 7., i.e. the so-called DHA
assumption.

It is possible to obtain an explicit expression for the a,,,,
coefficients of v _in the VB—CT model by using Eqn (4),

2322

with V) replaced by Vi — pcre:

k 2k6%1
ax)) — =< 1- 32 (13

2 [(vo + kbgeq)” + 41‘2]

~
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K362 (Vo + kiqeq)

asy = 5 5/2 (14)
[ (Vo + kégeq)” + 422]
KSR [ = (Vo + kiges)|
asn = 5 7/2 (15)
[(Vo -+ kégeq)” + 42
2ucrkdt?
an = fer N 32 (16)
[ (Vo -+ kégeq)” + 42
2¢2.2
ay = — 3MCTk ot (VO +k5Qeq) (17)

[(Vo + kéqeq)2 + 4t2} "

4TS R |2 = (Vo + kogeq)’|
az) = — 5 772 (18)
[(Vo + kbgeq)” + 47

322k (Vo + kbqe,
ap — Her ( 0 Qq) (19)

572
[ (Vo -+ kégeq)” + 42

4418 | (Vo + kogeq)” = 7]

aiz =
[ (Vo + kégeq)” + 422] "

and

612k 281 [(vo + k5qeq)2—t2}

axy = — 7/2
[ (Vo + kégeq)” + 42

Substitution of these expressions in Eqn (12) allows us

to identify each term in 7% as a harmonic (T}) or

anharmonic (72""") contribution:

, 4\ (06 ous
T{ldr — 2461136]1 I 222 He
K aq Geq €= aq Geq =

" 3\ [9ac\? e -
Tg = 1261126]2 = (E) ( aqzz> - 722117R (23)

qeq75:0

J. Phys. Org. Chem. 2004; 17: 131-137



ANHARMONICS CONTRIBUTIONS TO HYPERPOLARIZABILITY OF A PUSH-PULL POLYENE 135

6 82 e ous 2
S
K 8 q Geq:e=0 aq Geq,=0
3 _
- (i) ’Y?zzzfy2 (24)
T = —48a21919>
() (%)), L ()
ZKZ 8q Geq,e=0 aq Geq:6=0 Oe Geqie=0
= _2’7:&1’72]? (25)
4\ (9 s\’
TS = 24a3147 = — <_3) <_f> ( MZ)
K 8q Geq,e=0 aq Geq,6=0
1 _
= (5) 7511173 (26)
61\ [Ous 2 oal
Tanhar — 7261306]26]2 — _ (_) ( z) Tz
6 1 K3 aq Geqse=0 aq Geq6=0
1 _
N <§> 7511{73R (27)
3 2
()= (6) (), (&)
ano K 9q Geq.£=0 9q Geq,e=0
= ’YZZZWSR (28)
e\ 4
anhz AV 1 4
T = —24ayq) = — (_) ( Z) - <_> el
8 1 K4 8 q o0 2 2222
(29)
T — _7) (aif:l) i
@
K4 Oe Geq:e=0 a(] Geq,e=0
1 _
o <2> VTR (30)
and
e\ 4
T]anhar — 54 (a_%0> q‘l‘ — <£) (a_K> (a.uz)
0 ax 2K° )\ 02 ) 4 cm0\ 04 ] 4 oo
1 4
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In the above expressions, ;.. is the electronic con-
tribution to the second hyperpolarizability for push—pull
molecules obtained from the VB—CT model:*’

2
24128 2| (Vo + k8gea)” — 2]

ﬂy:zzz - 5 7/2 (32)
[ (Vo + kégeq) + 42|
and the factors 4 and R correspond to
_ 4>
3= ; 7 (33)
{ {(Vo + kbgeq)” + 412] - 2kt262}
and
9 Vo + kégeq)’
R= (_> (Vo ";) (34)
8/ [ (Vo+kéqeg)” — ]

We are now in a position to obtain an interesting
connection between nuclear relaxation and electronic
contributions to the second hyperpolarizability. By repla-
cement of the terms Tlhar and Tf‘“har in Eqn (12), and after
some algebraic manipulation, we found that ~._ for
push—pull molecules can be written as a sum of one
harmonic () and an anharmonic (y,,,,,) part, i.e. as a
function of the contributions V& =15, Y{2+ R} (T
terms) and AN =2 Y {C+RQ2+4C)} (TP
terms), respectively. We can also write 727 in a form
more instructive that stresses the physical nature of our
work, the relationship between 7. and 77

Vore = Ve V{2 + R+ 7[C + R(2 +7C)]} (35)

where C is given by

RO

In summary, by means of Eqn (35), a numerical
estimation of the contributions of anharmonics to the
nuclear relaxation second hyperpolarizability can be
easily carried for m-polyconjugated push—pull molecules.

At this stage, it should be emphasized, however, that
the result presented above is only valid when two
electronic states are taken in to account to calculate the
second hyperpolarizability, v..,.. Thus, we should expect
that Eqn (35) is qualitatively acceptable within the two-
state model approximations to the sum-over-state calcu-
lations. Therefore, 7,..,, whose sum-over-state expression
contains two-photon contribution so that at least three
different electronic states should be included, is expected
to deviate from the theoretical predictions of this work in
some molecular parameter regions.

C =
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Figure 2. v . A0, 7o, and A%, as a function of CT
character f

RESULTS

Equation (5) shows that g.q and f are linearly related to
each other. Given Vj and values for the parameters
k=33.55eV A2 r=1.1eV, §=024 A and pcr=32
D, Eqn (6) leads to a non-linear equation which is solved
iteratively for g.q. These parameters k, t, 0, and pcr are
useful for treating molecules with electron donor and
acceptor end groups connected by a hexatriene chain.’ 8.9
From the iterative solution, we found that g.q=0 and
f :% when V;=0, i.e. for the case of degenerate VB and
CT states.

The expressions of 7, Vi, Vannars @0d V5. are plotted
in Fig. 2 as a function of CT character f. We observe that
the results obtained are further proof that contributions
(both harmonic and anharmonic) from nuclear relaxation
are far from negligible for push—pull polyenes and
correlate well (qualitatively) with their electronic

4 ——————T——T—T—T—T—

har
T2

anhar
T4

Flgure 3. Thar Tanhar Tanhar Tanhar Tanhar and Tanhar terms
asa functlon of CT character f
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Figure 4. THr, Thar Tanhar and Tahar terms a function of
CT character f

counterpart. In general, we found the result

|7‘1nhdr| ~ |71?£1'| > h/?zvz

In order to clarify the origins of 477, we also plot 7;
and 7™M terms separately in Figs 3 and 4. As can be
seen, the terms Tgar’ Timhar’ Tanhar, T;mhar’ Tgnhar and T?Shar
(which are proportional to the factor R and tend to zero at
f= ) are important in the wing region of 7., whereas
the Thdr Tanhar - ranhar gnd 7anhar terms dominates around

=4

har

CONCLUSIONS

We have presented an exact analytical expression of 7
for push—pull molecules obtained from the AEEP method
beyond the hypothesis of the double harmonic approxima-
tion. The results obtained show that anharmonicity plays a
relevant role in determining the nuclear relaxation con-
tribution to +,,.,. A numerical estimation (for the case of
hexatriene chain) shows that this contribution is of the
same order of magnitude as for the purely harmonic
situation and larger than for the electronic case.

Note that the T har term contains both the IR (deriva-
tives of x7) and hyper -Raman (derivatives of 3%, ) terms,
whereas the 75 term is associated with Raman intensity
(Herzberg—Teller terms) only. Therefore, the contribu-
tions to 7. are of two kinds: one comes from simulta-
neous activity of a band in IR and hyper-Raman spectra,
the second from simple Raman activity.>’ These spectro-
scopic measurements may be used to obtain an estimate
of the 7™ terms related to Ve ar LEQNS (24)-(31)].

Finally, this paper is a contribution to the debated
problem of the relative importance of electronic and
nuclear contributions to molecular hyperpolarizabilities
in organic conjugated molecules. We hope that the analy-
tical treatment described in this paper may be regarded as
a useful starting point for further investigations.
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